Exercise 43

Find the points on the lemniscate in Exercise 31 where the tangent is horizontal.

Solution

The equation representing the lemniscate in Exercise 31 is $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$. Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left[2\left(x^{2}+y^{2}\right)^{2}\right]=\frac{d}{d x}\left[25\left(x^{2}-y^{2}\right)\right] \\
2 \cdot 2\left(x^{2}+y^{2}\right) \cdot \frac{d}{d x}\left(x^{2}+y^{2}\right)=25\left[\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(y^{2}\right)\right] \\
2 \cdot 2\left(x^{2}+y^{2}\right) \cdot\left(2 x+2 y \cdot y^{\prime}\right)=25\left[(2 x)-\left(2 y \cdot y^{\prime}\right)\right] \\
8 x^{3}+8 x^{2} y y^{\prime}+8 x y^{2}+8 y^{3} y^{\prime}=50 x-50 y y^{\prime} \\
4 x^{3}+4 x^{2} y y^{\prime}+4 x y^{2}+4 y^{3} y^{\prime}=25 x-25 y y^{\prime}
\end{gathered}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
\left(4 x^{2} y+4 y^{3}+25 y\right) y^{\prime}=25 x-4 x y^{2}-4 x^{3} \\
y^{\prime}=\frac{25 x-4 x y^{2}-4 x^{3}}{4 x^{2} y+4 y^{3}+25 y}
\end{gathered}
$$

To find where the tangent is horizontal, set $y^{\prime}=0$.

$$
y^{\prime}=\frac{25 x-4 x y^{2}-4 x^{3}}{4 x^{2} y+4 y^{3}+25 y}=0 \quad \rightarrow \quad 25 x-4 x y^{2}-4 x^{3}=0 \quad \rightarrow \quad x\left(25-4 y^{2}-4 x^{2}\right)=0
$$

This occurs when

$$
x=0 \quad \text { or } \quad x^{2}+y^{2}=\frac{25}{4} .
$$

Plug each of these values into the equation for the lemniscate.

$$
\begin{array}{ccc}
x=0: 2\left(0^{2}+y^{2}\right)^{2}=25\left(0^{2}-y^{2}\right) & \rightarrow \quad y=0 \\
y^{2}=\frac{25}{4}-x^{2}: 2\left[x^{2}+\left(\frac{25}{4}-x^{2}\right)\right]^{2}=25\left[x^{2}-\left(\frac{25}{4}-x^{2}\right)\right] & \rightarrow \quad x= \pm \frac{5 \sqrt{3}}{4}
\end{array}
$$

Note that having $x=0$ and $y=0$ makes y^{\prime} undefined, so they're discarded. The y-values corresponding to $x= \pm 5 \sqrt{3} / 4$ are

$$
y^{2}=\frac{25}{4}-\left(\pm \frac{5 \sqrt{3}}{4}\right)^{2}=\frac{25}{16} \quad \rightarrow \quad y= \pm \frac{5}{4} .
$$

Therefore, the points on the lemniscate that have a horizontal tangent line are

$$
\left(-\frac{5 \sqrt{3}}{4},-\frac{5}{4}\right) \quad \text { and } \quad\left(-\frac{5 \sqrt{3}}{4}, \frac{5}{4}\right) \quad \text { and } \quad\left(\frac{5 \sqrt{3}}{4},-\frac{5}{4}\right) \quad \text { and } \quad\left(\frac{5 \sqrt{3}}{4}, \frac{5}{4}\right) .
$$

The lemniscate is shown below with the points that have a horizontal tangent line.

